>> i_0=mod_exp(i,0,p) . i_0 = 1 >> g g = 2 >> g_e=mod_exp(g,e,p) g_e = 18879246 >> g_ep=mod_exp(g,ep,p)
>> g g = 2 >> g_e=mod_exp(g,e,p) g_e = 18879246
g = 2 >> g_e=mod_exp(g,e,p) g_e = 18879246
>> g_e=mod_exp(g,e,p) g_e = 18879246
g_e = 18879246
>>g ep=iiiog exp(g,ep,p)
g_ep = 191242163
not reduced mod (P-1
(P-1)
lized $\mathbf{mod} (p-1)$.
zed $mod(p-1)$ with exception.
lition operation
(<i>p</i> -1), then assume that
Y -/,
>> d=123456
d = 123456
>> md=int64(p-1-d)
md = 268311562
>> dpmd=mod(d+md,p-1)
\rightarrow apma=mod(a+ma,p-1) dpmd = 0
•
>> mdd=mod(-d,p-1) mdd = 268211562
mdd = 268311562
>> h=1234
h = 1234
>> hmd=mod(h-d,p-1)
hmd = 268312796
>> hmdd=mod(h+md,p-1)
hmdd = 268312796
/ 1 z

exists unique inverse element $i^{-1} \mod (p-1)$ such that $i * i^{-1} \mod (p-1) = 1$. This element can be found by *Extended Euclide algorithm* or using *Fermat little theorem*. We do not fall into details how to find i^{-1} mod (*p*-1) since we will use the ready-made computer code instead in our modeling.

Division operation / mod (p-1) of any element in Z_{p-1} by some element i is replaced by multiplication * operation with i^{-1} mod (p-1) if gcd(i, p-1) = 1 according to the *Statement* above.

To compute $u/i \mod (p-1)$ it is replaced by the following relation $u * i^{-1} \mod (p-1)$ since $u/i \mod (p-1) = u * i^{-1} \mod (p-1)$.

Discrete Exponent Function (6/14)

<u>Example 1</u>: Let for given integers u, x and h in Z_{p-1} we compute exponent s of generator g by the expression

Then

s = u + xh.

 $g^s \mod p = g^{s \mod (p-1)} \mod p.$

Therefore, *s* can be computed **mod** (p-1) in advance, to save a multiplication operations, i.e. $s = u + xh \mod (p-1)$.

<u>Example 2</u>: Exponent s computation including subtraction by $xr \mod (p-1)$ and division by i in \mathbb{Z}_{p-1} when gcd(i, p-1) = 1. $s = (h - xr)i^{-1} \mod (p-1)$.

Firstly $d = xr \mod (p-1)$ is computed: Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found.

Thirdly $i^{-1} \mod (p-1)$ is found.

And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.